On the Stability of the Coupling of 3d and 1d Fluid-structure Interaction Models for Blood Flow Simulations
نویسندگان
چکیده
We consider the coupling between three-dimensional (3D) and one-dimensional (1D) fluidstructure interaction (FSI) models describing blood flow inside compliant vessels. The 1D model is a hyperbolic system of partial differential equations. The 3D model consists of the Navier-Stokes equations for incompressible Newtonian fluids coupled with a model for the vessel wall dynamics. A non standard formulation for the Navier-Stokes equations is adopted to have suitable boundary conditions for the coupling of the models. With this we derive an energy estimate for the fully 3D1D FSI coupling. We consider several possible models for the mechanics of the vessel wall in the 3D problem and show how the 3D-1D coupling depends on them. Several comparative numerical tests illustrating the coupling are presented. Mathematics Subject Classification. 65M12, 65M60, 92C50, 74F10, 76Z05. Received November 15, 2006. Revised March 19, 2007.
منابع مشابه
4D geomechanical simulations for field development planning
3D and 4D geomechanical can be time-consuming to build and calibrate. However, once such a model is built, it is relative straightforward to use this model for various field development and management applications. In so doing, the return on the initial investment of time and effort in the creation of a 4D geomechanical model can be substantial. I present a case study where a 4D geomechanical m...
متن کاملStudy of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کاملNumerical aeroelastic analysis of wind turbine NREL Phase VI Rotor
This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI[1] responses of HAWT[2]. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. ...
متن کاملNumerical aeroelastic analysis of wind turbine NREL Phase VI Rotor
This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI1 responses of HAWT2. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. Aeroelastic responses of the blade were obtained by ...
متن کاملEffects of non-newtonian properties of blood flow on magnetic nanoparticle targeted drug delivery
Objective(s): One applications of nanotechnology is in the area of medicine which is called nanomedicine. Primary instruments in nanomedicine can help us to detect diseases and used for drug delivery to inaccessible areas of human tissues. An important issue in simulating the motion of nanoparticles is modeling blood flow as a Newtonian or non-Newtonian fluid. Sometimes blood flow is simulated ...
متن کامل